Perform fisher's exact enrichment analysis
KO_fisher(
ko_stat,
padj_threshold = 0.05,
logFC_threshold = NULL,
add_mini = NULL,
p.adjust.method = "BH",
type = c("pathway", "module")[1],
feature = "ko",
modulelist = NULL,
verbose = TRUE
)
ko_stat dataframe from ko.test
.
p.adjust threshold to determine whether a feature significant or not. p.adjust < padj_threshold, default: 0.05
logFC threshold to determine whether a feature significant or not. abs(logFC)>logFC_threshold, default: NULL
add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.05*min(avg_abundance)
The method used for p-value adjustment (default: "BH").
"pathway" or "module" for default KOlist_file.
one of "ko", "gene", "compound"
NULL or customized modulelist dataframe, must contain "id","K_num","KOs","Description" columns. Take the `KOlist` as example, use custom_modulelist
.
logical
data.frame
## use `fisher.test` from the `stats` package.
data("reporter_score_res")
fisher_res <- KO_fisher(reporter_score_res)
#> detect the origin_p.adjust, use the origin_p.adjust.
#> ===============================`fisher.test` done===============================