R/calculation.R
ko.test.Rd
Differential analysis or Correlation analysis for KO-abundance table
ko.test(
kodf,
group,
metadata = NULL,
method = "wilcox.test",
pattern = NULL,
p.adjust.method1 = "none",
threads = 1,
verbose = TRUE
)
KO_abundance table, rowname are feature ids (e.g. K00001 if feature="ko"; PEX11A if feature="gene"; C00024 if feature="compound"), colnames are samples.
The comparison groups (at least two categories) in your data, one column name of metadata when metadata exist or a vector whose length equal to columns number of kodf. And you can use factor levels to change order.
sample information data.frame contains group
the type of test. Default is `wilcox.test`. Allowed values include:
t.test
(parametric) and wilcox.test
(non-parametric). Perform comparison between two groups of samples. If the grouping variable contains more than two levels, then a pairwise comparison is performed.
anova
(parametric) and kruskal.test
(non-parametric). Perform one-way ANOVA test comparing multiple groups.
'pearson', 'kendall', or 'spearman' (correlation), see cor
.
a named vector matching the group, e.g. c('G1'=1,'G2'=3,'G3'=2), use the correlation analysis with specific pattern to calculate p-value.
p.adjust.method for `ko.test`, see p.adjust
default 1
logical
ko_pvalue data.frame
Other GRSA:
combine_rs_res()
,
get_reporter_score()
,
pvalue2zs()
,
reporter_score()
# \donttest{
data("KO_abundance_test")
ko_pvalue <- ko.test(KO_abundance, "Group", metadata)
#> =================================Checking group=================================
#> 30 samples are matched for next step.
#> ===========================Removing all-zero rows: 0============================
#> ==============================Calculating each KO===============================
#> ===========================Using method: wilcox.test============================
#> 1000 features done.
#> 2000 features done.
#> 3000 features done.
#> 4000 features done.
#>
#> Compared groups: WT, OE
#> Total KO number: 4535
#> Compare method: wilcox.test
#> Time use: 3.040
# }