RDA
myRDA(
otutab,
env,
norm = TRUE,
scale = FALSE,
choose_var = FALSE,
direction = "forward",
nperm = 499,
verbose = TRUE,
method = "rda",
dist = "bray"
)
myCCA(
otutab,
env,
norm = TRUE,
scale = FALSE,
choose_var = FALSE,
nperm = 499,
verbose = TRUE
)
myCAP(
otutab,
env,
norm = TRUE,
scale = FALSE,
choose_var = FALSE,
nperm = 499,
verbose = TRUE,
dist = "bray"
)
an otutab data.frame, samples are columns, taxs are rows.
environmental factors
should normalize? (default:TRUE)
should scale species? (default:FALSE)
should choose variables? use forward step
The direction of the stepwise selection, "both", "forward" or "backward", default is "forward"
number of permutation
verbose
"rda", "cca", "cap", "dbrda"
The name of the dissimilarity (or distance) index for "cap" or "dbrda", for vegdist
rda/cca
vegdist;unifrac
data(otutab, package = "pcutils")
env <- metadata[, 6:10]
# RDA
myRDA(otutab, env) -> phy.rda
#> ==================================Check models==================================
#> DCA analysis, select the sorting analysis model according to the first value of the Axis lengths row.
#> - If it is more than 4.0 - CCA (based on unimodal model, canonical correspondence analysis);
#> - If it is between 3.0-4.0 - both RDA/CCA;
#> - If it is less than 3.0 - RDA (based on linear model, redundancy analysis)
#>
#> Call:
#> vegan::decorana(veg = dat.h)
#>
#> Detrended correspondence analysis with 26 segments.
#> Rescaling of axes with 4 iterations.
#> Total inertia (scaled Chi-square): 0.3192
#>
#> DCA1 DCA2 DCA3 DCA4
#> Eigenvalues 0.03142 0.02276 0.01927 0.017818
#> Additive Eigenvalues 0.03142 0.02276 0.01927 0.017881
#> Decorana values 0.03169 0.02142 0.01511 0.009314
#> Axis lengths 0.73929 0.72605 0.52357 0.666913
#>
#> =================================Initial Model==================================
#> Initial cca, vif>20 indicates serious collinearity:
#> env4 env5 env6 lat long
#> 2.574997 2.674671 1.252002 1.381839 1.211392
#> Initial Model R-square: 0.04828743
#> ===================================Statistics===================================
#> 0.3282029 constrained indicates the degree to which environmental factors explain differences in community structure
#> 0.6717971 unconstrained means that the environmental factors cannot explain the part of the community structure
RDA_plot(phy.rda, "Group", metadata)