Envfit test for RDA result

envfitt(phy.rda, env, ...)

Arguments

phy.rda

a rda result

env

environmental factors

...

add

Value

g_test object

See also

Examples

data(otutab, package = "pcutils")
env <- metadata[, 6:10]
# RDA
myRDA(otutab, env) -> phy.rda
#> ==================================Check models================================== 
#> DCA analysis, select the sorting analysis model according to the first value of the Axis lengths row.
#> - If it is more than 4.0 - CCA (based on unimodal model, canonical correspondence analysis);
#> - If it is between 3.0-4.0 - both RDA/CCA;
#> - If it is less than 3.0 - RDA (based on linear model, redundancy analysis)
#> 
#> Call:
#> vegan::decorana(veg = dat.h) 
#> 
#> Detrended correspondence analysis with 26 segments.
#> Rescaling of axes with 4 iterations.
#> Total inertia (scaled Chi-square): 0.3192 
#> 
#>                         DCA1    DCA2    DCA3     DCA4
#> Eigenvalues          0.03142 0.02276 0.01927 0.017818
#> Additive Eigenvalues 0.03142 0.02276 0.01927 0.017881
#> Decorana values      0.03169 0.02142 0.01511 0.009314
#> Axis lengths         0.73929 0.72605 0.52357 0.666913
#> 
#> =================================Initial Model================================== 
#> Initial cca, vif>20 indicates serious collinearity:
#>     env4     env5     env6      lat     long 
#> 2.574997 2.674671 1.252002 1.381839 1.211392 
#> Initial Model R-square: 0.04828743 
#> ===================================Statistics=================================== 
#> 0.3282029 constrained indicates the degree to which environmental factors explain differences in community structure
#> 0.6717971 unconstrained means that the environmental factors cannot explain the part of the community structure
envfitt(phy.rda, env) -> envfit_res
plot(envfit_res)