$$Vi=\frac{E-Ei}{E}$$ E is the global efficiency and Ei is the global efficiency after the removal of the node i and its entire links.

c_net_stability(
  go_ls,
  mode = "robust_test",
  partial = 0.5,
  step = 10,
  reps = 9,
  threads = 1,
  verbose = TRUE,
  keystone = FALSE
)

robust_test(
  go_ls,
  partial = 0.5,
  step = 10,
  reps = 9,
  threads = 1,
  verbose = TRUE
)

vulnerability(go_ls, threads = 1, verbose = TRUE)

robustness(go_ls, keystone = FALSE, reps = 9, threads = 1, verbose = TRUE)

Arguments

go_ls

an igraph object or igraph list.

mode

"robust_test", "vulnerability", "robustness"

partial

how much percent vertexes be removed in total (default: 0.5, only for robust_test)

step

how many nodes be removed each time? (default: 10, only for robust_test)

reps

simulation number (default: 9)

threads

threads

verbose

verbose

keystone

remove 70%% keystones instead of remove 50%% nodes (default: False, only for robustness)

Value

a data.frame

data.frame (robustness class)

a vector

Examples

# \donttest{
data("c_net")
if (requireNamespace("ggpmisc")) {
  c_net_stability(co_net, mode = "robust_test", step = 20, reps = 9) -> robust_res
  plot(robust_res, index = "Average_degree", mode = 2)
}
#> Loading required namespace: ggpmisc

c_net_stability(co_net, mode = "vulnerability") -> vulnerability_res
plot(vulnerability_res)


robustness(co_net) -> robustness_res
plot(robustness_res)


module_detect(co_net) -> co_net_modu
zp_analyse(co_net_modu, mode = 2) -> co_net_modu

c_net_stability(co_net_modu, mode = "robustness", keystone = TRUE) -> robustness_res
plot(robustness_res)

# }